There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译
自然行为由不可预测的动力学组成,可以突然切换并在许多不同的时间尺度上展开。尽管在受约束或简化的基于任务的条件下构建行为的表示方面已经找到了一些成功,但由于它们假设单一的时间动力学规模,因此无法将其中许多模型应用于自由和自然主义的设置。在这项工作中,我们跨多个尺度(BAMS)引入引导程序,这是一种多尺度表示模型:我们结合了一个汇总模块,该模块汇总了与具有不同时间接收场的编码器上提取的特征,并设计了一组潜在目标,以进行引导程序各个空间中的表示,以鼓励不同时间尺度的分离。我们首先将我们的方法应用于在不同地形类型中导航的四倍的数据集上,并表明我们的模型捕获了行为的时间复杂性。然后,我们将我们的方法应用于MABE 2022多代理行为挑战,我们的模型在两个子任务中排名第三,第一个排名第1,并在分析行为时显示了合并多时间尺度的重要性。
translated by 谷歌翻译
通常通过从单个组件的动力学上抽象来构建人口级动力学的模型来研究复杂的时变系统。但是,当构建人群级别的描述时,很容易忽略每个人,以及每个人如何贡献更大的情况。在本文中,我们提出了一种新颖的变压器体系结构,用于从时变数据中学习,该数据构建了个人和集体人口动态的描述。我们没有在一开始就将所有数据结合到我们的模型中,而是开发可分离的体系结构,该体系结构先在单个时间序列上运行,然后再将它们传递给它们。这会导致置换式属性属性,可用于跨不同大小和顺序的系统传输。在证明我们的模型可以应用于在多体系统中成功恢复复杂的相互作用和动力学之后,我们将方法应用于神经系统中的神经元种群。在神经活动数据集上,我们表明我们的多尺度变压器不仅会产生强大的解码性能,而且在转移方面提供了令人印象深刻的性能。我们的结果表明,可以从一种动物的大脑中的神经元学习并传递不同动物大脑中神经元的模型,并在集合和动物之间具有可解释的神经元对应。这一发现为解码并表示大量神经元的新途径开辟了一条新的途径。
translated by 谷歌翻译
神经活动的意义和简化表示可以产生深入了解如何以及什么信息被神经回路内处理。然而,如果没有标签,也揭示了大脑和行为之间的联系的发现表示可以挑战。在这里,我们介绍了所谓的交换,VAE学习神经活动的解开表示一种新型的无监督的办法。我们的方法结合了特定实例的排列损失,试图最大限度地输入(大脑状态)的转变观点之间的代表性相似性的生成模型框架。这些转化(或增强)视图是通过掉出神经元和抖动样品中的时间,这直观地应导致网络维护既时间一致性和不变性用于表示神经状态的特定的神经元的表示创建的。通过对从数百个不同的灵长类动物大脑的神经元的模拟数据和神经录音的评价,我们表明,它是不可能建立的表示沿有关潜在维度解开神经的数据集与行为相联系。
translated by 谷歌翻译
神经记录的进展现在在前所未有的细节中研究神经活动的机会。潜在的变量模型(LVMS)是用于分析各种神经系统和行为的丰富活动的有希望的工具,因为LVM不依赖于活动与外部实验变量之间的已知关系。然而,目前缺乏标准化目前阻碍了对神经元群体活性的LVM进行的进展,导致采用临时方式进行和比较方法。为协调这些建模工作,我们为神经人群活动的潜在变量建模介绍了基准套件。我们从认知,感官和机动领域策划了四种神经尖峰活动的数据集,以促进适用于这些地区各地的各种活动的模型。我们将无监督的评估视为用于评估数据集的模型的共同框架,并应用几个显示基准多样性的基线。我们通过评估释放此基准。 http://neurallatents.github.io.
translated by 谷歌翻译
通过最大化示例的不同转换“视图”之间的相似性来构建自我监督学习(SSL)构建表示的最先进的方法。然而,在用于创建视图的转换中没有足够的多样性,难以克服数据中的滋扰变量并构建丰富的表示。这激励了数据集本身来查找类似但不同的样本,以彼此的视图。在本文中,我们介绍了我自己的观点(MISOW),一种新的自我监督学习方法,在数据集中定义预测的不同目标。我们的方法背后的想法是主动挖掘观点,发现在网络的表示空间中的邻居中的样本,然后从一个样本的潜在表示,附近样本的表示。在展示计算机愿景中使用的基准测试中,我们突出了在神经科学的新应用中突出了这个想法的力量,其中SSL尚未应用。在测试多单元神经记录时,我们发现Myow在所有示例中表现出其他自我监督的方法(在某些情况下超过10%),并且经常超越监督的基线。通过MOSO,我们表明可以利用数据的多样性来构建丰富的观点,并在增强的新域中利用自我监督,其中包括有限或未知。
translated by 谷歌翻译
自我监督的学习提供了一个有希望的途径,消除了在图形上的代表学习中的昂贵标签信息的需求。然而,为了实现最先进的性能,方法通常需要大量的负例,并依赖于复杂的增强。这可能是昂贵的,特别是对于大图。为了解决这些挑战,我们介绍了引导的图形潜伏(BGRL) - 通过预测输入的替代增强来学习图表表示学习方法。 BGRL仅使用简单的增强,并减轻了对否定例子对比的需求,因此通过设计可扩展。 BGRL胜过或匹配现有的几种建立的基准,同时降低了内存成本的2-10倍。此外,我们表明,BGR1可以缩放到半监督方案中的数亿个节点的极大的图表 - 实现最先进的性能并改善监督基线,其中表示仅通过标签信息而塑造。特别是,我们的解决方案以BGRL为中心,将kdd杯2021的开放图基准的大规模挑战组成了一个获奖条目,在比所有先前可用的基准更大的级别的图形订单上,从而展示了我们方法的可扩展性和有效性。
translated by 谷歌翻译
开发有效的自动分类器将真实来源与工件分开,对于宽场光学调查的瞬时随访至关重要。在图像差异过程之后,从减法伪像的瞬态检测鉴定是此类分类器的关键步骤,称为真实 - 博格斯分类问题。我们将自我监督的机器学习模型,深入的自组织地图(DESOM)应用于这个“真实的模拟”分类问题。 DESOM结合了自动编码器和一个自组织图以执行聚类,以根据其维度降低的表示形式来区分真实和虚假的检测。我们使用32x32归一化检测缩略图作为底部的输入。我们展示了不同的模型训练方法,并发现我们的最佳DESOM分类器显示出6.6%的检测率,假阳性率为1.5%。 Desom提供了一种更细微的方法来微调决策边界,以确定与其他类型的分类器(例如在神经网络或决策树上构建的)结合使用时可能进行的实际检测。我们还讨论了DESOM及其局限性的其他潜在用法。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
While the brain connectivity network can inform the understanding and diagnosis of developmental dyslexia, its cause-effect relationships have not yet enough been examined. Employing electroencephalography signals and band-limited white noise stimulus at 4.8 Hz (prosodic-syllabic frequency), we measure the phase Granger causalities among channels to identify differences between dyslexic learners and controls, thereby proposing a method to calculate directional connectivity. As causal relationships run in both directions, we explore three scenarios, namely channels' activity as sources, as sinks, and in total. Our proposed method can be used for both classification and exploratory analysis. In all scenarios, we find confirmation of the established right-lateralized Theta sampling network anomaly, in line with the temporal sampling framework's assumption of oscillatory differences in the Theta and Gamma bands. Further, we show that this anomaly primarily occurs in the causal relationships of channels acting as sinks, where it is significantly more pronounced than when only total activity is observed. In the sink scenario, our classifier obtains 0.84 and 0.88 accuracy and 0.87 and 0.93 AUC for the Theta and Gamma bands, respectively.
translated by 谷歌翻译